Extensions 1→N→G→Q→1 with N=C2 and Q=C23×D11

Direct product G=N×Q with N=C2 and Q=C23×D11
dρLabelID
C24×D11176C2^4xD11352,194


Non-split extensions G=N.Q with N=C2 and Q=C23×D11
extensionφ:Q→Aut NdρLabelID
C2.1(C23×D11) = C22×C4×D11central extension (φ=1)176C2.1(C2^3xD11)352,174
C2.2(C23×D11) = C23×Dic11central extension (φ=1)352C2.2(C2^3xD11)352,186
C2.3(C23×D11) = C22×Dic22central stem extension (φ=1)352C2.3(C2^3xD11)352,173
C2.4(C23×D11) = C22×D44central stem extension (φ=1)176C2.4(C2^3xD11)352,175
C2.5(C23×D11) = C2×D445C2central stem extension (φ=1)176C2.5(C2^3xD11)352,176
C2.6(C23×D11) = C2×D4×D11central stem extension (φ=1)88C2.6(C2^3xD11)352,177
C2.7(C23×D11) = C2×D42D11central stem extension (φ=1)176C2.7(C2^3xD11)352,178
C2.8(C23×D11) = D46D22central stem extension (φ=1)884C2.8(C2^3xD11)352,179
C2.9(C23×D11) = C2×Q8×D11central stem extension (φ=1)176C2.9(C2^3xD11)352,180
C2.10(C23×D11) = C2×D44⋊C2central stem extension (φ=1)176C2.10(C2^3xD11)352,181
C2.11(C23×D11) = Q8.10D22central stem extension (φ=1)1764C2.11(C2^3xD11)352,182
C2.12(C23×D11) = C4○D4×D11central stem extension (φ=1)884C2.12(C2^3xD11)352,183
C2.13(C23×D11) = D48D22central stem extension (φ=1)884+C2.13(C2^3xD11)352,184
C2.14(C23×D11) = D4.10D22central stem extension (φ=1)1764-C2.14(C2^3xD11)352,185
C2.15(C23×D11) = C22×C11⋊D4central stem extension (φ=1)176C2.15(C2^3xD11)352,187

׿
×
𝔽